

Intact Implicit Sequence Learning in Individuals with Autism Shauna M. Stark¹ and Barry Gordon^{1,2} Johns Hopkins University & School of Medicine Department of Neurology¹ Department of Cognitive Science²

Background

Individuals with autism have demonstrated impaired performance in nearly all cognitive domains, including learning and memory.

The sequential reaction time (SRT) task, originally introduced by Nissen & Bullmer (1987), has been used to demonstrate procedural acquisition of a visual sequence, reflecting nondeclarative or implicit learning mechanisms.

Mostofsky et al. (2000) demonstrated that individuals with autism were impaired at learning a 10-trial repeating visual sequence using a variant of the SRT task. They argue that abnormalities of the cerebellum in autism prevent acquisition of procedural knowledge on the SRT task.

Is cerebellar or other brain damage actually preventing the acquisition of procedural learning, or is the learning merely slower and requires more training than normal? With additional training, would individuals with autism be able to acquire a visual sequence, or are the underlying mechanisms simply too impaired?

Init	Exp	Age	Diagnostic Tests	IQ Tests	
СН	4,8	13	Aberrant Behavior Checklist; Autism Symptom Inventory	WISC III FSIQ: 78	4-le
RE	4,8	13	CARS	WISC III FSIQ: 44	
NN	4,8	14	Vineland	NA	
LN	4,8	11	Vineland, CARS	Four subtests of Leiter-R: 54	-
RH	8	13	Vineland	CIIS: 12-20 mos	
SE	8	6	Vineland, CARS	UNIT Full Scale Raw Score: 108 (average to high average range)	8-le
HR	8	6	CARS	NA	
EY	4	12	CARS	C-TONI IQ: low-average range	—

Infant Intelligence Scale; UNIT: Universal Nonverbal Intelligence Test, C-TONI: Comprehensive Test of Nonverbal Intelligence; NA: not available.

Methods & Design

4-length and 8-length sequences: 12 blocks of 48 trials of a repeated sequence 2 blocks of random probe trials

Autism group = 6 runs through using the same sequence (each separated by 1 week) Control group = 1 run through each sequence

8-length sequence exp run first, followed by 4-length sequence

8-length sequence = each location used twice 4-length sequence = each location used once

ants

ngth Sequence Experiment:

- Autism Group: N = 5; Mean Age: 12.6 years; All males Control Group: N = 5; Mean Age: 12.8 years; All males
- ngth Sequence Experiment:
- Autism Group: N = 7; Mean Age: 10.9 years; All males Control Group: N = 9; Mean Age: 12.3 years; All males

trol group matched for age and gender; no history of seizures or learning disabilities; no siblings diagnosed with autism.

Conclusions

Individuals with autism demonstrated acquisition of a 4-length sequence, which was significant at an individual level after six study-test runs.

Additional training on an 8-length sequence also resulted in acquisition of the repeated sequence, but only at the group level, with no individual demonstrating robust learning.

Procedural learning in individuals with autism is clearly slower and more variable than in normally developing individuals, but possible with more exposure to the sequence and shorter sequence lengths.

Future research will investigate the role of attention and possible contribution of interference in the performance decrement for the 8-length sequences.

Acknowledgements: We thank Erica Woodland, Lauren Moskowitz, & Greg Minah for assistance with data collection and Vicky Smrcka for assistance with data analysis. This research was supported by the Therapeutic Cognitive Neuroscience Research Fund.

400 ·			
200 ·		•	•
000	Session 4	Session 5	Session 6
600- 400- 200-			
	1 2 3 4 5 6 7 8 9 101112 1 2 Repeated L Random	1 2 3 4 5 6 7 8 9 101112 1 2 Repeated III Random	1 2 3 4 5 6 7 8 9 101112 1 2 —— Repeated —— I LI Random
4-	length Seq: Overa	Il Effect Size for eac	ch autism participant

	Final Repeated	First Random	Effect Size
Participant	Block	Block	(Rep – Rand)
RE	246 msec	449 msec	203 msec
LN	718 msec	764 msec	46 msec
CH	608 msec	747 msec	139 msec
NN	576 msec	691 msec	115 msec
EY	250 msec	489 msec	239 msec
I no http://www.secondedimensional states in the second			

Autistic Group was significant, all p's <.05

and first block of Random trials)	
6	

8-length Sequence: Autism group performance by run				
	T Se	ession 1	Session 2	Session 3
1500				
1500				т
				Кт
1000				
500	•		•	
	S	ession 4	Session 5	Session 6
1500	-			
1000			_	
	IIII			
500	1234567801	011121 2 1 2 3 4 5 6	7 8 0 1011121 2 1 2	3 4 5 6 7 8 0 1011121 2
	Repeated –	Bandom	eated L	- Repeated
		Kandom	Random	Random
8-length Seg: Overall Effect Size for each autism participant				
Ŭ		Einel Beneated	Eirot Bondom	
	Particinant	Rinal Repeated	FIRST Random Block	(Pop – Pand)
				(Rep = Rallu)
	RE	099 MSec	709 msec	
			1072 maga	30 IIISEC
		975 maga	902 IIISEC	

No individual in the Autistic Group demonstrated a significant Effect Size.